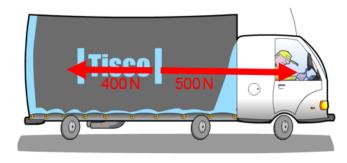
What is Gravity?

- Gravity is a force that occurs between all objects
- Gravity always acts to pull objects towards each other
- The bigger the mass of an object, the more gravity it has

Mass and Weight


- Mass is the amount of matter in an object and is measured in kilograms
- Weight is a force and is caused by the pull of gravity acting on a mass
- Weight is measured in newtons and has both magnitude and direction
- A newton meter is used to weight
- · Gravity pulls the object downwards
- The amount the spring stretches tells us the force or weight

The sum effect of more than one force is called the **resultant force**.

The resultant force is calculated by working out the difference between opposing forces in each direction. What is the resultant force on this truck?

A resultant force of 100 N is accelerating the truck.

What is a force?

A force is a "push" or a "pull". Some common examples:

Keywords

Equilibrium - State of an object when opposing forces are balanced

Deformation -Changing shape due to a force **Linear relationship** - When two variables are graphed and show a straight line which goes through the origin, and they can be called directly proportional.

Newton - Unit for measuring forces (N)

Resultant force - Single force which can replace all the forces acting on an object and have the same effect.

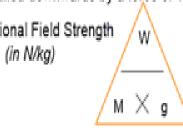
Friction - Force opposing motion which is caused by the interaction of surfaces moving over one another. It is called 'drag' if one is a fluid.

Tension - Force extending or pulling apart

Compression - Force squashing or pushing together **Contact force** - One that acts by direct contact (friction) **Non Contact force** – Exerted without touching (gravity)

Range -The maximum and minimum values of a variable. **Interval** -The gap between the values of the independent variable.

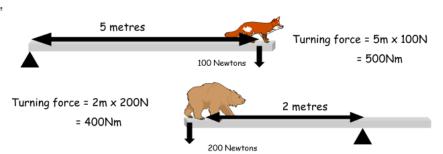
Control group - Those that are not exposed to the factor being tested.

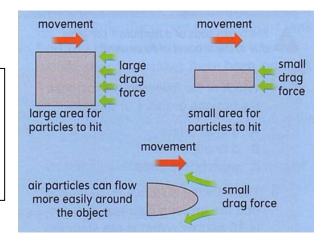

Repeatable - When repeat readings are close together **Balanced Force** – Forces acting on a object are equal and opposite (no resultant force)

Streamlined - Shaped so that the flow of air around the body is made as smooth as possible

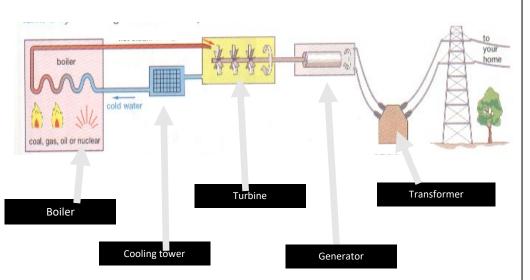
Weight vs. Mass

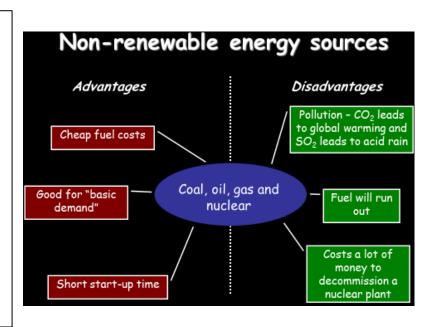
Earth's Gravitational Field Strength is 10N/kg. In other words, a 1kg mass is pulled downwards by a force of 10N.

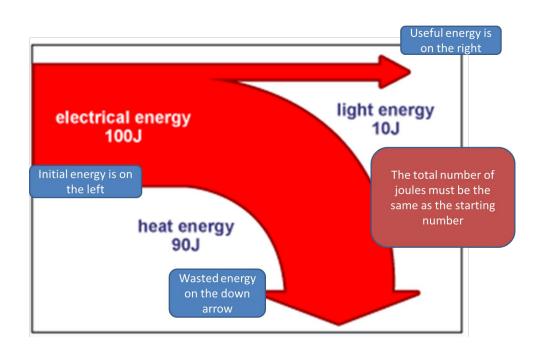

Weight = Mass x Gravitational Field Strength (in N) (in kg) (in N/kg)


Moments

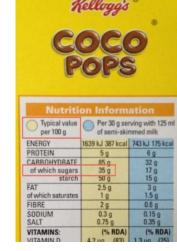
A moment is a "turning force", e.g. trying to open or close a door or using a spanner. The size of the moment is given by:


Moment (in Nm) = force (in N) x distance from pivot (in m)

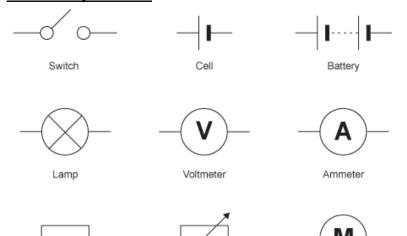

Rule 1 - If the object is **still**, or moving at a constant speed the forces are **balanced**. Rule 2 - If the object is **speeding up** or **slowing down**, the forces are **unbalanced**.



Air Resistance


- **Power** how quickly energy is transferred by a device (watts).
- Energy resource something with stored energy that can be released in a useful way
- Non-renewable an energy resource that cannot be replaced and will be used up.
- Renewable an energy resource that can be replaced and will not run out. Examples are solar, wind, waves, geothermal and biomass.
- Fossil fuels non- renewable energy resources formed from the remains of ancient plants or animals. Examples are, coal, crude oil and natural gas.

- When food burns, it releases chemical energy
- If the food is burned under a test tube containing water, chemical energy in the water is transferred to heat energy and the water heats up
- The hotter the water gets, the more energy there is in the food

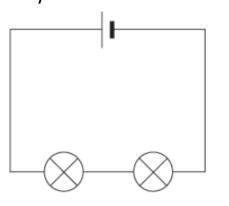


Types of energy	Sources
Heat or thermal energy	Hot objects, e.g. fires
Light energy	The Sun, light, bulbs, fires, etc.
Sound energy	Vibrating objects e.g., Loudspeakers
Electrical energy	Available every time a current flows
Chemical energy	Food, fuels and batteries from chemical reactions.
Kinetic energy (the energy an object has because it is moving)	Flowing water, wind, etc.
Elastic potential energy	Objects such as springs and rubber bands that are stretched or twisted or bent
Gravitational potential energy	Objects that have a high position and are able to fall
Nuclear energy	Changes in the nucleus of certain heavy atoms e.g. Uranium.

- Thermal energy store: Filled when an object is warmed up.
- Chemical energy store: Emptied during chemical reactions when energy is transferred to surroundings.
- Kinetic energy store: Filled when an object speeds up.
- Gravitational potential energy store: Filled when an object is raised.
- **Elastic energy store:** Filled when a material is stretched or compressed.
- **Dissipated:** Become spread out wastefully.

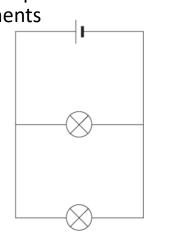
Voltage & Resistance and Current

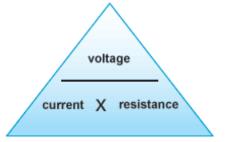
Circuit symbols:

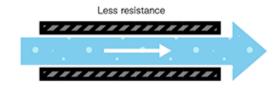


Keywords:

- **Potential difference (voltage)**: The amount of energy shifted from the battery to the moving charge, or from the charge to circuit components, in volts (V).
- **Resistance**: A property of a component, making it difficult for charge to pass through, in ohms (Ω) .
- **Current**: Flow of electric charge, in amperes (A).
- **Electrical conductor**: A material that allows current to flow through it easily, and has a low resistance.
- **Electrical insulator**: A material that does not allow current to flow easily, and has a high resistance.

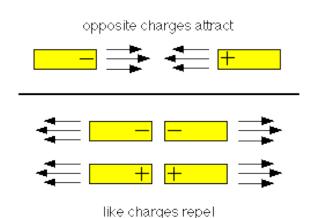

<u>Series circuit:</u> components on same loop

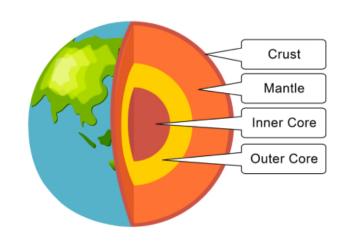

- Current constant all the way around



<u>Parallel circuit:</u> components on separate loops

- Current split between the components





Electrons are tiny particles that carry a negative charge

If an object:

- Gains electrons it becomes negatively charged
- Loses electrons it becomes positively charged

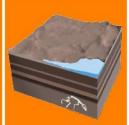
3 Major Rock Types

Igneous

 Formed from the solidification of molten rock (magmaor lava).

Sedimentary

 Formed at the Earth's surface from the accumulation and cementation of fragmented pieces of older rock produced by weathering.


Metamorphic

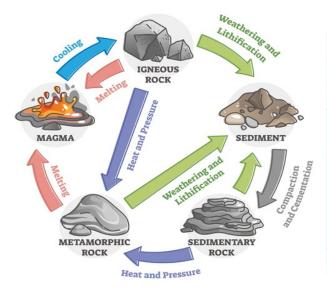
 Rocks that have undergone physical changes as a result of exposure to extreme pressure, temperature and fluids.

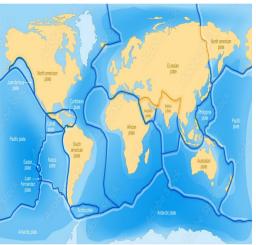
An animal is buried by sediment, such as volcanic ash or silt, shortly after it dies. Its bones are protected from rotting by the layer of sediment.

HOW IS A FOSSIL FORMED?

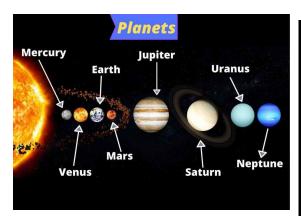
2. Layers More sediment la

accumulate above the animal's remains, and minerals, such as silica (a compound of silicon and oxygen), slowly replace the calcium phosphate in the bones.

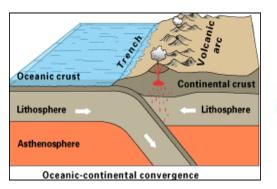


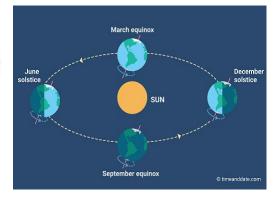

3. Movement 4. Erosion

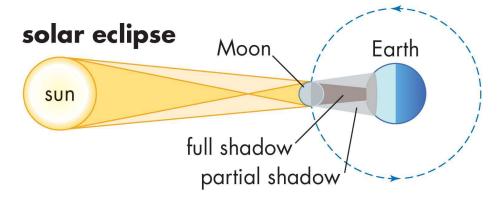
plates, or giant rock slabs that make up Earth's surface, lifts up the sediments and pushes the fossil closer to the surface.


Erosion from rain, rivers, and wind wears away the remaining rock layers. Eventually erosion or people digging for fossils will expose the preserved remains.

ROCK CYCLE




Earth and universe



Vibration: A back and forth motion that repeats.

Longitudinal wave: Where the direction of vibration is the same as that of the wave.

Transverse wave: Where the direction of the vibration is perpendicular to the direction of the wave.

Volume: How loud or quiet a sound is, in decibels (dB).

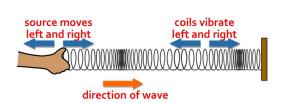
Pitch: How low or high a sound is. A low (high) pitch sound has a low (high) frequency.

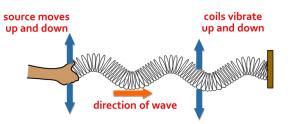
Amplitude: The maximum amount of vibration, measured from the middle position of the wave, in metres.

Wavelength: Distance between two corresponding points on a wave, in metres.

Frequency: The number of waves produced in one second, in hertz.

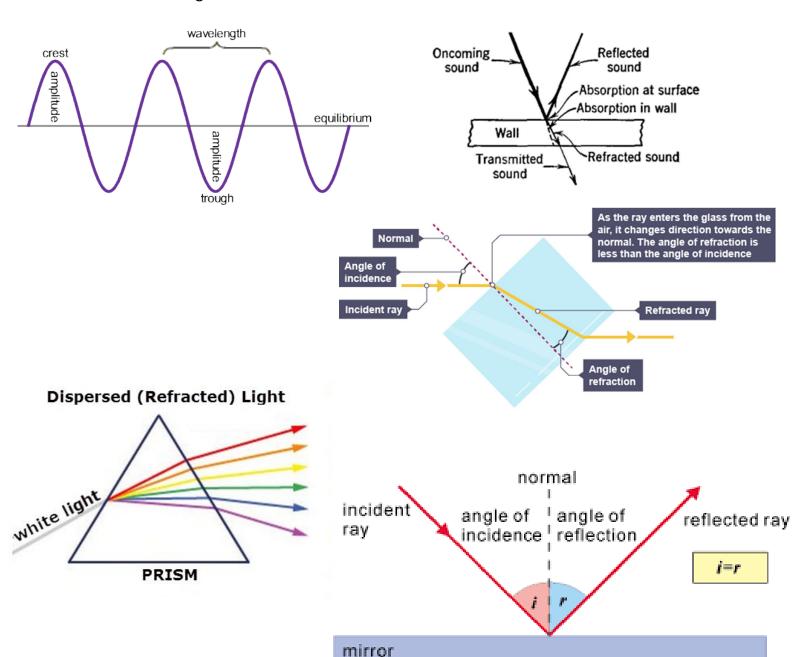
Vacuum: A space with no particles of matter in it.

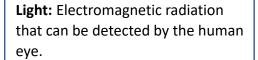

Oscilloscope: Device for viewing patterns of sound waves that have been turned into electrical current.


Absorption: When energy is transferred from sound to material.

Auditory range: The lowest and highest frequencies that a type of animal can hear.

Echo: Reflection of sound waves from a surface back to a listener.


Sound is made when an object or material vibrates. When you sing it's your vocal chords or on a guitar it's the strings. Sound travels in waves caused by the vibrations. These pass through molecules (gas, liquid or solid) and reach our ears. Sound waves transfer energy not matter.



Sound travels in longitudinal waves

Light travels in transverse waves

Ray: A narrow beam of light.

Medium: The substance the wave is travelling through, this could be a solid, liquid or gas.

Reflection: When light or any type of wave hits a new surface and returns in the direction it originated.

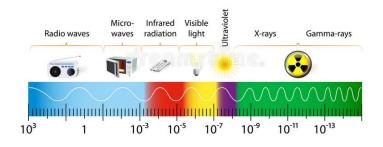
Refraction: The change in the direction of a wave when it passes from one medium into another.

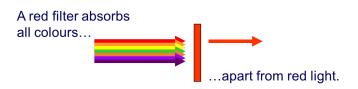
Normal: A line drawn at 90° to the surface the ray of light is hitting.

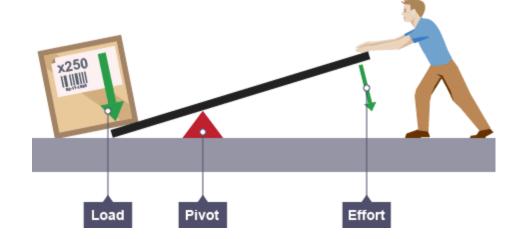
Spectrum: The range of colours produced when white light passes through a prism.

Filter: Only allows certain wavelengths (colours) of light through, absorbing all others.

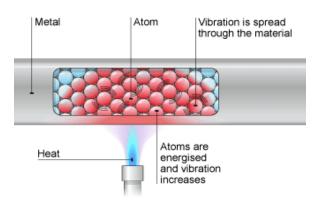
Transparent: A material that allows all light to pass through it.

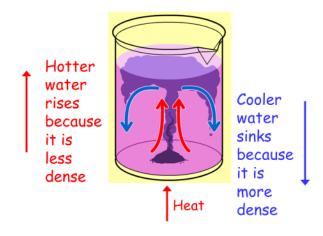

Translucent: A material that allows most light through but not enough to make out detailed shapes.


Opaque: An object that lets no light through.


Dispersion: The splitting of white light into different wavelengths (colours)

Electromagnetic spectrum: range of frequencies of **electromagnetic** radiation and their respective wavelengths and photon energies.


THE ELECTROMAGNETIC SPECTRUM



Conduction

Convection

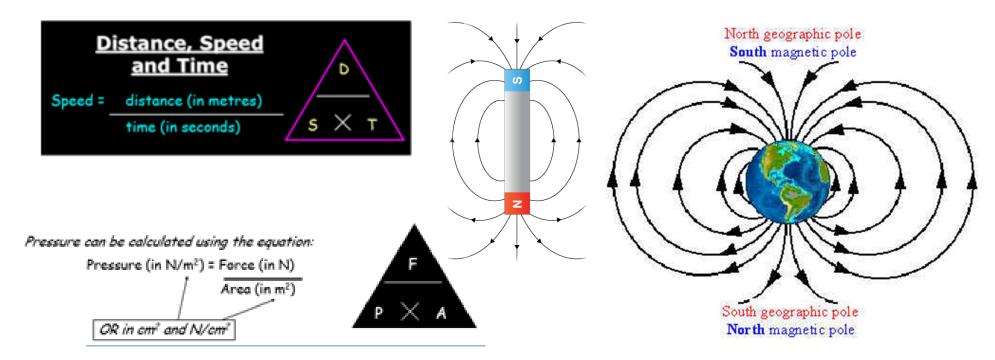
Key words

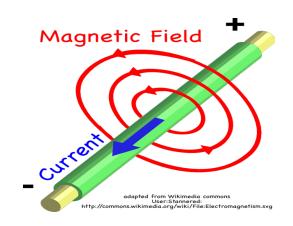
- Thermal conductor material that allows heat to move through it
- Thermal insulator material that only allows heat to move through it slowly
- Temperature a measure of particle movement
- Thermal energy amount of energy stored in a material due to particles vibrating
- Conduction transfer of thermal energy by the vibration of particles
- Convection transfer of thermal energy by particles rising
- **Radiation** transfer of thermal energy as a wave

Radiation

Which flask cooled down faster? Dark surfaces emit more thermal radiation than shiny surfaces. They also absorb more thermal radiation.

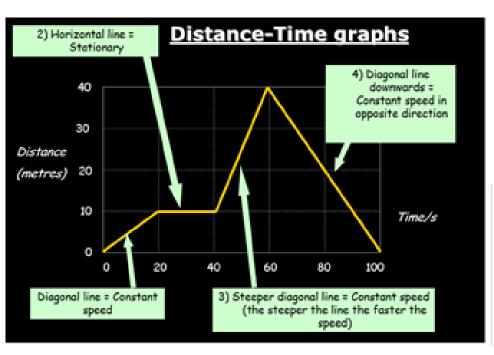
- Work done = force x distance
 W = F x d
- W is measures in joules.
- **F** is measure in newtons.
- d is measured in metres.
- When work is done, energy is transferred


Speed – how much distance is covered on how much time.


Average speed – overall distance travelled divided by overall time.

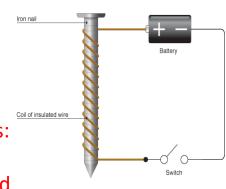
Acceleration – how quickly speed increases.

Fluid – no fixed shape, gas or liquid.


Pressure – ratio of force to surface area in N/m²

The magnetic field is strongest at the poles, where the field lines are most concentrated. Opposite poles attract, and like poles repel.

Iron, Nickel and Cobalt are magnetic metals


When an electric current flows in a wire, it creates a magnetic field around the wire. This effect can be used to make an electromagnet.

We can make an electromagnet stronger by:

- wrapping the coil around an iron core
- adding more turns to the coil
- increasing the current flowing through the coil.

Electromagnets have some advantages over permanent magnets:

- they can be turned on and off
- the strength and direction of the magnetic field can be varied

Mechanical	Force acts upon an object
Electrical	Electric current flow
Heat	Temperature difference between objects
Radiation	Electromagnetic waves or sound

Kinetic energy	Energy stored by a moving object	½ X mass X (speed)² ½ mv²
Elastic Potential energy	Energy stored in a stretched spring, elastic band	% X spring constant X (extension) ² $%$ ke ² (Assuming the limit of proportionality has not been exceeded)
Gravitational Potential energy Energy gained an object raise above the ground		Mass X gravitational field strength X height mgh

System	An object or group of objects that interact together	EG: Kettle boiling water.
Energy stores	Kinetic, chemical, internal (thermal), gravitational potential, elastic potential, magnetic, electrostatic, nuclear	Energy is gained or lost from the object or device.
Ways to transfer energy	Light, sound, electricity, thermal, kinetic are ways to transfer from one store to another store of energy.	EG: electrical energy transfers chemical energy into thermal energy to heat
Unit	Joules (J)	water up.

Power	The rate of energy transfer	1 Joule of energy per second = 1 watt of power	Power = energy transfer ÷ time P = E ÷ t Power = work done ÷ time, P = W ÷ t
-------	-----------------------------	--	---

Units

Joules per Kilogram degree

Celsius (J/Kg°C)

Degrees Celsius (°C)

Joules (J)

Newton (N)

Metre (m)

Watts (W)

Seconds (s)

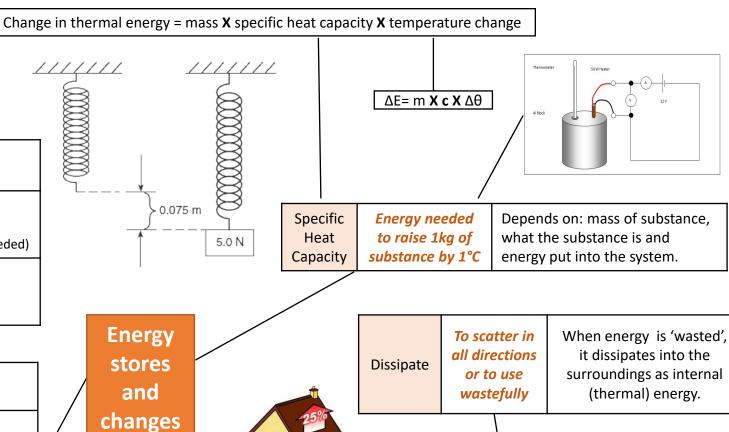
Specific Heat Capacity

Temperature change

Work done

Force

Distance moved


Power

Time

Units Energy (KE, EPE, GPE, Joules (J) thermal) Velocity Metres per second (m/s) Spring constant Newton per metre (N/m) Extension Metres (m) Mass Kilogram (Kg) Gravitational field strength Newton per kilogram (N/Kg) Height Metres (m)

AQA

ENERGY

Principle of conservation of energy

The amount of energy always stays the same.

Energy cannot be created or destroyed, only changed from one store to another.

Efficiency

Efficiency = <u>Useful output energy transfer</u>

Total input energy transfer

Efficiency = <u>Useful power output</u>

Total power input

Energy

transferred

usefully

Insulation,

streamline design,

lubrication of

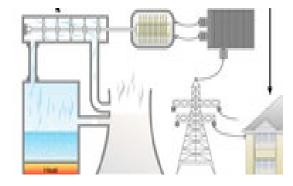
moving parts.

How much energy is

usefully transferred

Energy Conservation and Dissipation

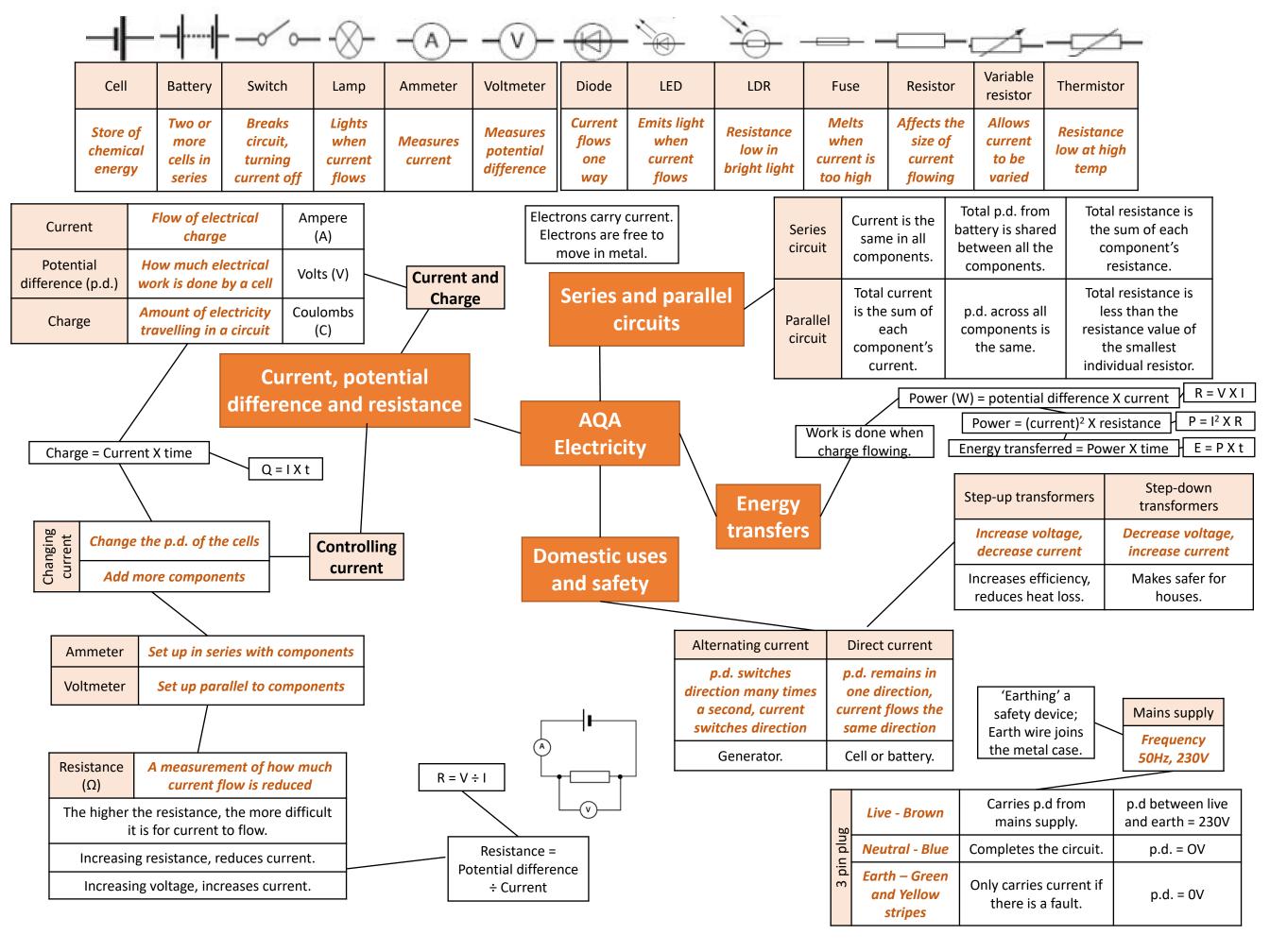

Ways to

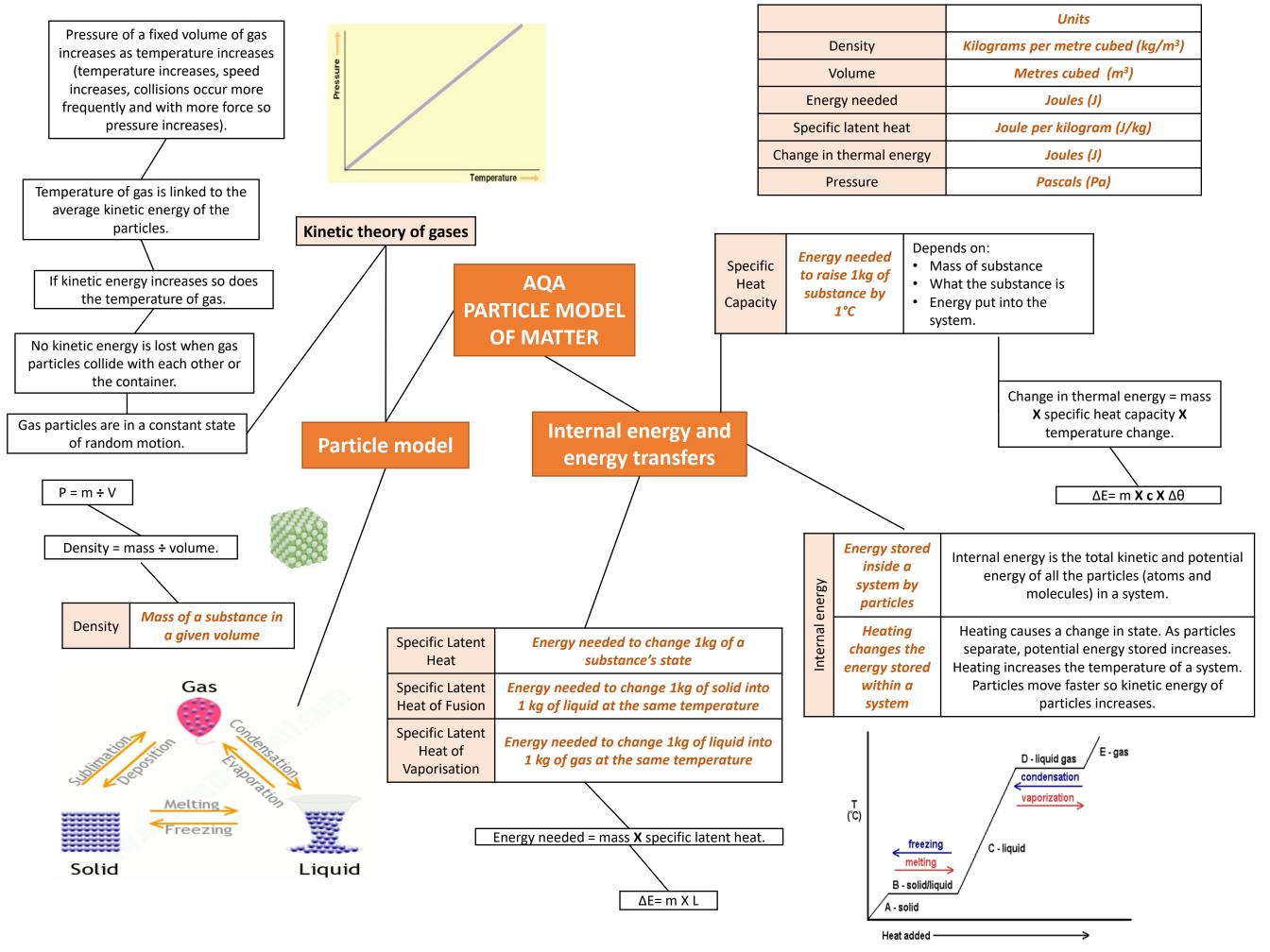

reduce

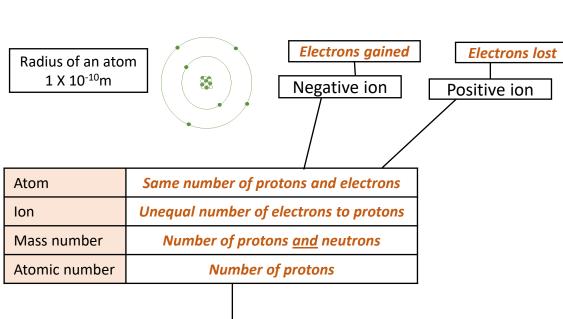
'wasted'

energy

Power station – NB: You need to understand the principle behind generating electricity. An energy resource is burnt to make steam to drive a turbine which drives the generator.

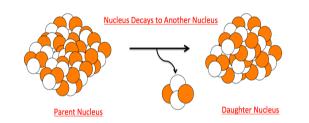


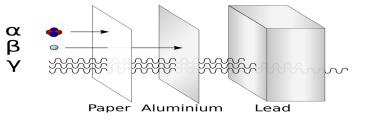



AQA ENERGY – Part 2 Global Energy Resources

National Grid

How it works	Uses	Positive	Negative				
Burnt to release thermal energy used to turn water into steam to turn turbines	Generating electricity, heating and transport	Provides most of the UK energy. Large reserves. Cheap to extract. Used in transport, heating and making electricity. Easy to transport.	Non-renewable. Burning coal and oil releases sulfur dioxide. When mixed with rain makes acid rain. Acid rain damages building and kills plants. Burning fossil fuels releases carbon dioxide which contributes to global warming. Serious environmental damage if oil spilt.				
Nuclear fission process	Generating electricity	No greenhouse gases produced. Lots of energy produced from small amounts of fuel.	Non-renewable. Dangers of radioactive materials being released into air or water. Nuclear sites need high levels of security. Start up costs and decommission costs very expensive. Toxic waste needs careful storing.				
Plant matter burnt to release thermal energy	Transport and generating electricity	Renewable. As plants grow, they remove carbon dioxide. They are 'carbon neutral'.	Large areas of land needed to grow fuel crops. Habitats destroyed and food not grown. Emits carbon dioxide when burnt thus adding to greenhouse gases and global warming.				
Every day tides rise and fall, so generation of electricity can be predicted	Generating electricity	Renewable. Predictable due to consistency of tides. No greenhouse gases produced.	Expensive to set up. A dam like structure is built across an estuary, altering habitats and causing problems for ships and boats.				
Up and down motion turns turbines	Generating electricity	Renewable. No waste products.	Can be unreliable depends on wave output as large waves can stop the pistons working.				
Falling water spins a turbine	Generating electricity	Renewable. No waste products.	Habitats destroyed when dam is built.				
Movement causes turbine to spin which turns a generator	Generating electricity	Renewable. No waste products.	Unreliable – wind varies. Visual and noise pollution. Dangerous to migrating birds.				
Directly heats objects in solar panels or sunlight captured in photovoltaic cells	Generating electricity and some heating	Renewable. No waste products.	Making and installing solar panels expensive. Unreliable due to light intensity.				
Hot rocks under the ground heats water to produce steam to turn turbine		Renewable. Clean. No greenhouse gases produced.	Limited to a small number of countries. Geothermal power stations cause earthquake tremors.				
	to turn water into steam to turn turbines Nuclear fission process Plant matter burnt to release thermal energy Every day tides rise and fall, so generation of electricity can be predicted Up and down motion turns turbines Falling water spins a turbine Movement causes turbine to spin which turns a generator Directly heats objects in solar panels or sunlight captured in photovoltaic cells Hot rocks under the ground heats water to produce steam to turn	to turn water into steam to turn turbines Nuclear fission process Generating electricity Plant matter burnt to release thermal energy Every day tides rise and fall, so generation of electricity can be predicted Up and down motion turns turbines Generating electricity and some heating Generating electricity and heating	Surnt to release thermal energy used to turn water into steam to turn turbines Generating electricity, heating and transport Nuclear fission process Generating electricity Generating electricity Function process Generating electricity Generating electricity Function process Generating electricity Generating electricity Generating electricity Generating electricity Function process Generating electricity Generating electricity Generating electricity Renewable. No waste products. Function process Generating electricity Generating electricity Generating electricity Generating electricity And some heating Generating electricity Generating electricity Renewable. No waste products. Renewable. No waste products. Renewable. No waste products. Generating electricity Generating electricity And some heating Generating electricity Generating electricity Renewable. Clean. No greenhouse gases produced. Generating electricity Generating electricity Generating electricity Generating electricity And beating Generating electricity Generating				





				_
Particle	Charge	Size	Found	
Neutron	None	1	In the nucleus	
Proton	+	1	in the nucleus	
Electron	-	Tiny	Orbits the nucleus	

Democritus	Suggested idea of atoms as small spheres that cannot be cut.
J J Thomson (1897)	Discovered electrons— emitted from surface of hot metal. Showed electrons are negatively charged and that they are much less massive than atoms.
Thomson (1904)	Proposed 'plum pudding' model – atoms are a ball of positive charge with negative electrons embedded in it.
Geiger and Marsden (1909)	Directed beam of alpha particles (He ²⁺)at a thin sheet of gold foil. Found some travelled through, some were deflected, some bounced back.
Rutherford (1911)	Used above evidence to suggest alpha particles deflected due to electrostatic interaction between the very small charged nucleus, nucleus was massive. Proposed mass and positive charge contained in nucleus while electrons found outside the nucleus which cancel the positive charge exactly.
Bohr (1913)	Suggested modern model of atom – electrons in circular orbits around nucleus, electrons can change orbits by emitting or absorbing electromagnetic radiation. His research led to the idea of some particles within the nucleus having positive charge; these were named protons.
Chadwick (1932)	Discovered neutrons in nucleus – enabling other scientists to account for mass of atom.

Decay	Range in air	lonising power	Penetration power
Alpha	Few cm	Very strong	Stopped by paper
Beta	Few m	Medium	Stopped by Aluminium
Gamma	Great distances	Weak	Stopped by thick lead

Radioactive decay	Unstable atoms randomly emit radiation to become stable					
Detecting	Use Geiger Muller tube					
Unit	Becquerel					
Ionisation	All radiation ionises					

AQA ATOMIC STRUCTURE

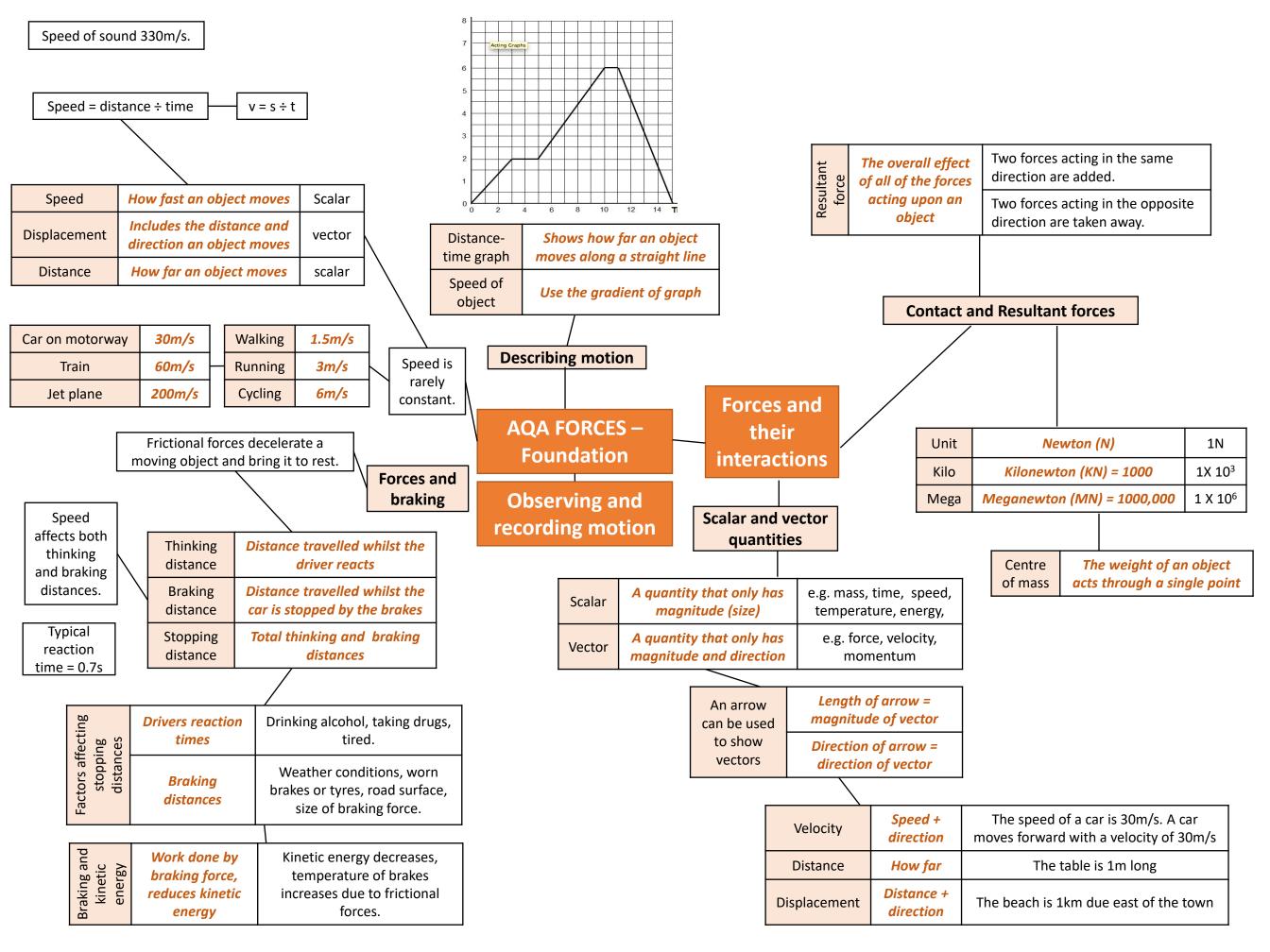
Atoms and Nuclear Radiation

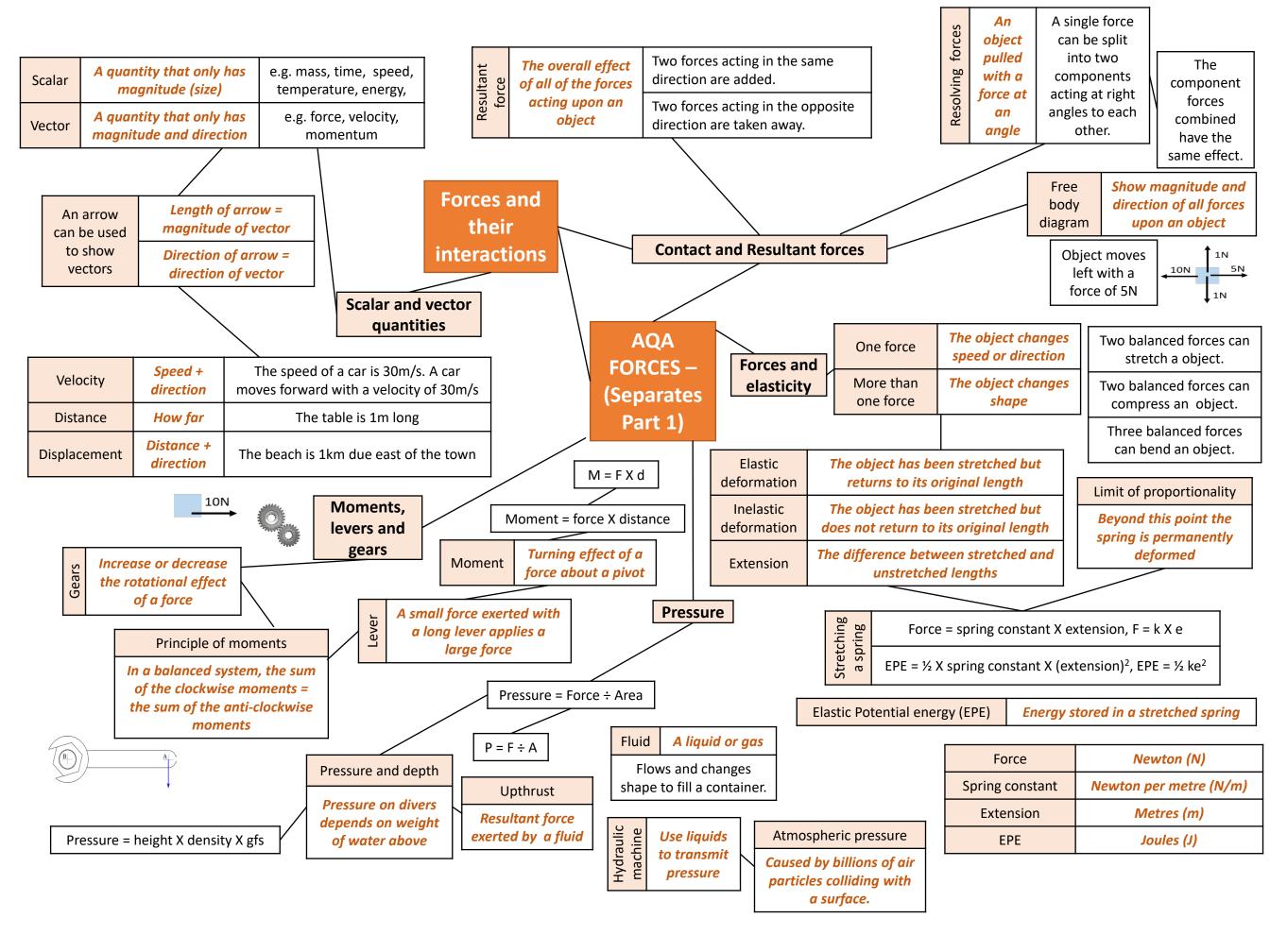
Isotope 6 Li

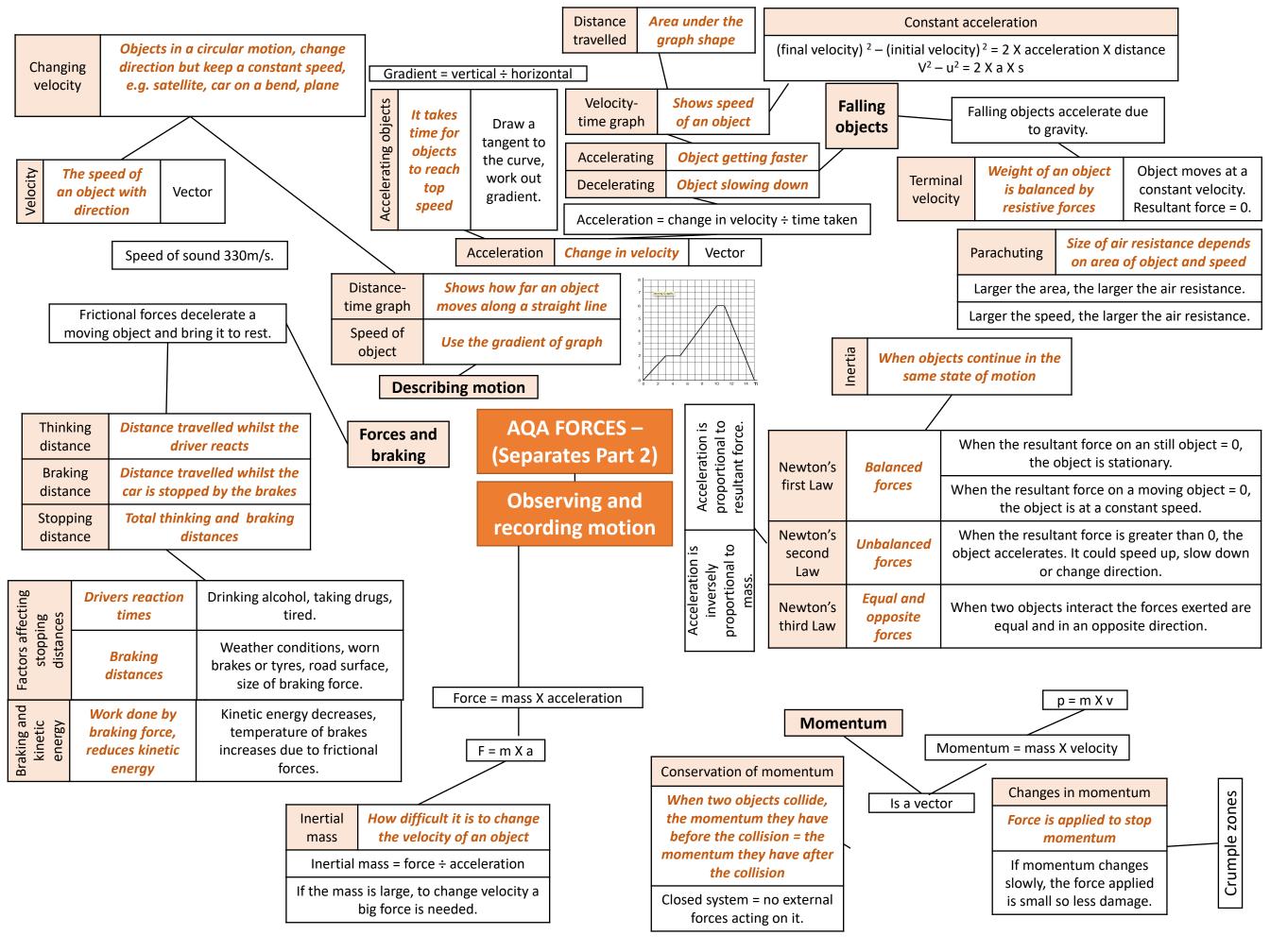
⁷Li

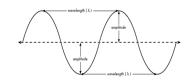
 $^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}He$

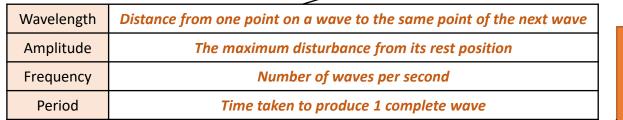
 ${}^{14}_{6}C \rightarrow {}^{14}_{7}N + {}^{0}_{-1}e$


 $\xrightarrow{99} Tc \rightarrow \xrightarrow{99} Tc + \gamma$


Different forms of an element with the same number of protons but different number of neutrons


Decay	Em	itted from nucleus	Changes in mass number and atomic number				
Alpha (α)	Не	lium nuclei (⁴ He)	-4	-2			
Beta (β)		Electron $\binom{0}{-1}e$	0	+1			
Gamma (γ)	Elec	tromagnetic wave	0	0			
Neutron		Neutron	-1	0			


	- 1	ius of an atom 1 X 10 ⁻¹⁰ m		trons go gative i			rons lost tive ion		Decay	Range	e in air	lonising power	_	Penetration po	ower			
Atom	Atom Same number of protons and electrons				1//			Α	Alpha	Few	/ cm	Very stro	ng Stopped by			α 🔸	•	
lon			ber of electrons to pr		₩ •	Nucleus Decays	To Another Nucleus	В	Beta	Fev	v m	Mediur	n	Stopped by Alun		β ∘ Υ ∜		
Mass numl	oer	Number o	f protons <u>and</u> neutro	ns	1	Parent Nucleus Daughter Nucleus			Samma	Great d	istance	es Weak		Stopped by thic	k lead		Paper Alu	uminium Lead
Atomic nur	nber	Nu	mber of protons			Radioactiv			atoms ra	•					l l	_	s in mass	
Particle	Charg	ne Size	Found	1\		decay			n to beco		le	Decay	Em.	itted from nucle	us nui		and atomic mber	
Neutron	None	·				Detecting		Use Ge	eiger Mu			Alpha (α)	Не	elium nuclei (4H)	e)	-4	-2	$\frac{238}{92}U \rightarrow \frac{234}{90}Th + \frac{4}{2}H$
Proton	+	1	In the nucleus	Atom		Jnit 		Λ II	Becquer			Beta (β)		Electron $\begin{pmatrix} 0 \\ -1 \end{pmatrix}$		0	+1	$^{14}_{6}C \rightarrow ^{14}_{7}N + ^{0}_{-1}e$
Electron	-	Tiny	Orbits the nucleus	1 Str		<u>onisation</u>		All ro	adiation	ionises		Gamma (γ)		ctromagnetic wa	ive	0	0	$-\frac{^{99}Tc \rightarrow ^{99}Tc + \gamma}{^{43}Tc + \gamma}$
				structure				A	Atoms	and		Neutron		Neutron		-1	0	200- 80 (4) 175- 81 (4) 150-
Isotope	⁶ ₃ Li		⁷ Li	re		Atoms	and		Nucle	ear	C	ontamination		Unwanted pres	ence of r	adioad	ctive atoms	Double 125- 100- 100- 100- 100- 100- 100- 100- 10
Different fo		f an element wi		-		Isoto	pes		Radiation		Ir	radiation		Person is in expose		ed to radioactive source		
	_		number of neutrons				101							Half 7	The time	taken t	to lose half	
Discovery of the nucleus					7	^	AQA	_				d uses of					lioactivity	Number of both box
	Su	grasted idea of a	atoms as small spheres t	hat can	not]	ATOMIC STRUCTUR			Radioactive					Sievert		Unit measuring dose of radiation		
Democritus Suggested idea of atoms as small spheres that can be cut.			ilat call	1101	(Separates)								Constant low level environmenta			•		
JJ			ons– emitted from surfa			(ocparates)			, radia			1011		Background e.g. from nuclear testing, nuclear waste				
Thomson (1897)	m _i		ectrons are negatively cl nuch less massive than	_	ana				1 11565			sotopes have		Short half-lives used in high doses, long half lives used in low dose				es used in low doses.
Thomson			dding' model – atoms a			t.				differer		I		Isotope with short half life injected, allowed to circulate and coller in damaged areas. PET scanner used to detect emitting radiation				
(1904)		itive charge with	negative electrons eml	pedded i	in it.				Tracers Used w		sed wi							
Geiger and Marsden			Ilpha particles (He ²⁺)at a some travelled through,			fusion								Must be beta or	gamma a	s alpha	a does not p	enetrate the body.
(1909)		-	ed, some bounced back.			L fui			Radiation therapy	n Use		eat illnesses cancer	1		, .			e used to kill cells. ed gamma ray gun.
	det		dence to suggest alpha pectrostatic interaction b			and	Fue	l rods		Made of L			1				•	escape, hitting nuclei.
Rutherford very small charged nucleus, nucleus was massive.				e.	uc		trol ro		- Tauc or o				s the rate of reac					
(1911) Proposed mass and positive charge contained in nucleus while electrons found outside the nucleus				fission	/	crete						humans – thick						
			the positive charge exa			ar fi											·	
	ci	rcular orbits arou	ern model of atom – electrons of all and nucleus, electrons of	an chan	ge	Nuclear	ear		large uns			tron hits U-23 bs neutron. sr		leus, nucleus mitting two or		-	ats, chain ormed	Compound nucleus 141 Ba 1n 0 - 145 Ba 1n 0 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Bohr (1913)		•	ng or absorbing electron ch led to the idea of so	_		Nuc	Nuclear fission		s splits to smaller n		three	neutrons and	two	smaller nuclei.	Used ir	n nucle	ear power	305 U 305 Kr
() = 0,		thin the nucleus I	having positive charge; named protons.	•		_						Process also re	elease	eleases energy.		statio	ns	Deuterium Héliu
Chadwick			· .	ng othei	${r}$		Nuclear fusion		mall nucl ake one l	-		Difficult to do o		- 1	Oc	curs in	stars	Energ
(1932)	Discovered neutrons in nucleus – enabling other scientists to account for mass of atom.							nucleus ame			amounts of pressure and temperatu needed.			Occurs in stars			Tritium Neutro	



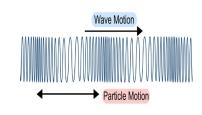
Wave speed	Wave speed = frequency X wavelength	$V = f X \lambda$
Wave period	Wave period = 1 ÷ frequency	T = 1 ÷ f
Speed	Speed = distance ÷ time	v = d ÷ t

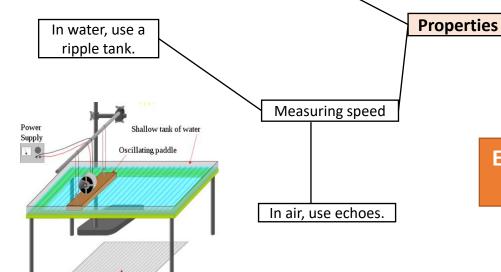
Transverse wave	Vibration causing the wave is at right angles to the direction of energy transfer	Energy is carried outwards by the wave.	Water and light waves, S waves.
Longitudinal wave	Vibration causing the wave is parallel to the direction of energy transfer	Energy is carried along the wave.	Sound waves, P waves.

Waves in air, fluids and solids

AQA Waves

Foundation


Electromagnetic


waves

Transverse and Longitudinal waves

e.g. Gamma

Short wavelengths have high frequency

Normal

Angle of incidence = angle of reflection (i) = (r)

and high energy. Units Metres (m) Distance Wave speed Metres per second (m/s) Wavelength Metres (m)

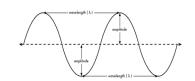
Frequency

Period

radio

Continuous spectrum Electromagnetic wave of transverse waves

Reflected Incident Ray Ray ultraviolet infrared gamma ray Angle of X-ray visible Angle of microwave Reflection Incidence

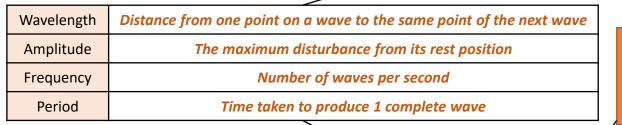

Low frequency, long wavelength.

Hertz (Hz)

Seconds (s)

Wave lengths reflected White Wave lengths absorbed Black

High frequency, short wavelength



In water, use a

Oscillating paddle

Wave speed	Wave speed = frequency X wavelength	$V = f X \lambda$
Wave period	Wave period = 1 ÷ frequency	T = 1 ÷ f
Speed	Speed = distance ÷ time	v = d ÷ t

Transverse wave	Vibration causing the wave is at right angles to the direction of energy transfer	Energy is carried outwards by the wave.	Water and light waves, S waves.
Longitudinal wave	Vibration causing the wave is parallel to the direction of energy transfer	Energy is carried along the wave.	Sound waves, P waves.

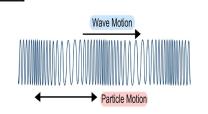
Waves in air, fluids and solids

AQA

Waves

Higher

Transverse and Longitudinal waves

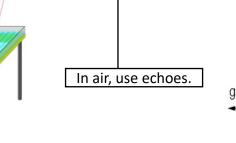

e.g. Gamma

Short wavelengths

have high frequency

and high energy.

Properties


ripple tank. **Electromagnetic** Measuring speed waves

Properties

Electromagnetic Continuous spectrum wave of transverse waves

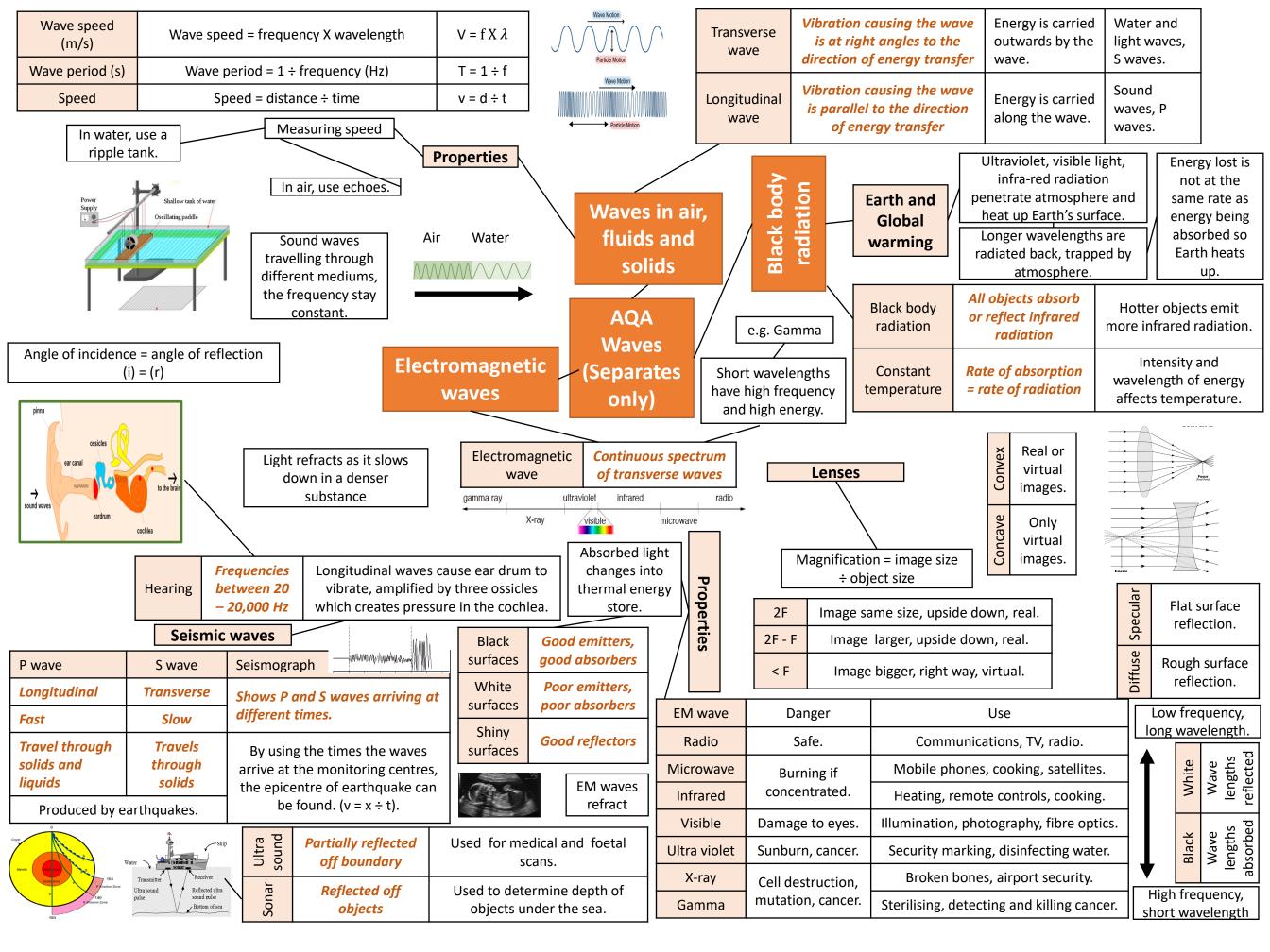
Units Metres (m) Distance Wave speed Metres per second (m/s) Wavelength Metres (m) Hertz (Hz) Frequency Seconds (s)

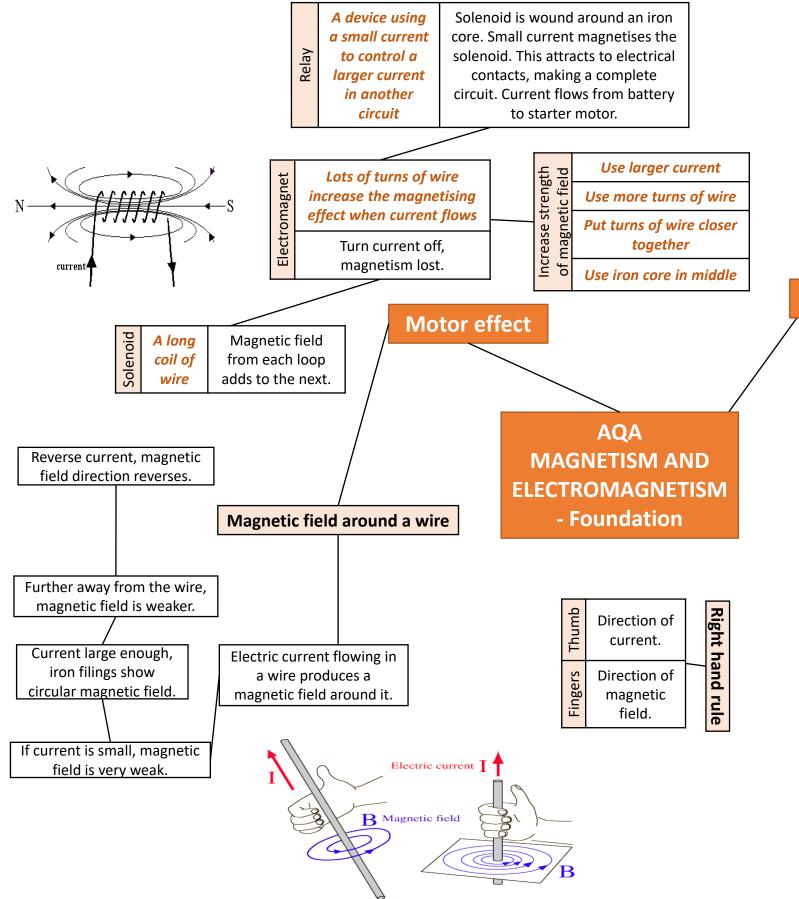
Period

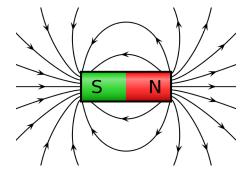
ultraviolet infrared radio gamma ray visible X-ray microwave

Incident	Normal		Reflected
Ray		1.7	Ray
		and the same	
Angle of	. ,,,,	Angle of Reflection	
Incidence	4	Hellection	

Angle of incidence = angle of reflection (i) = (r)

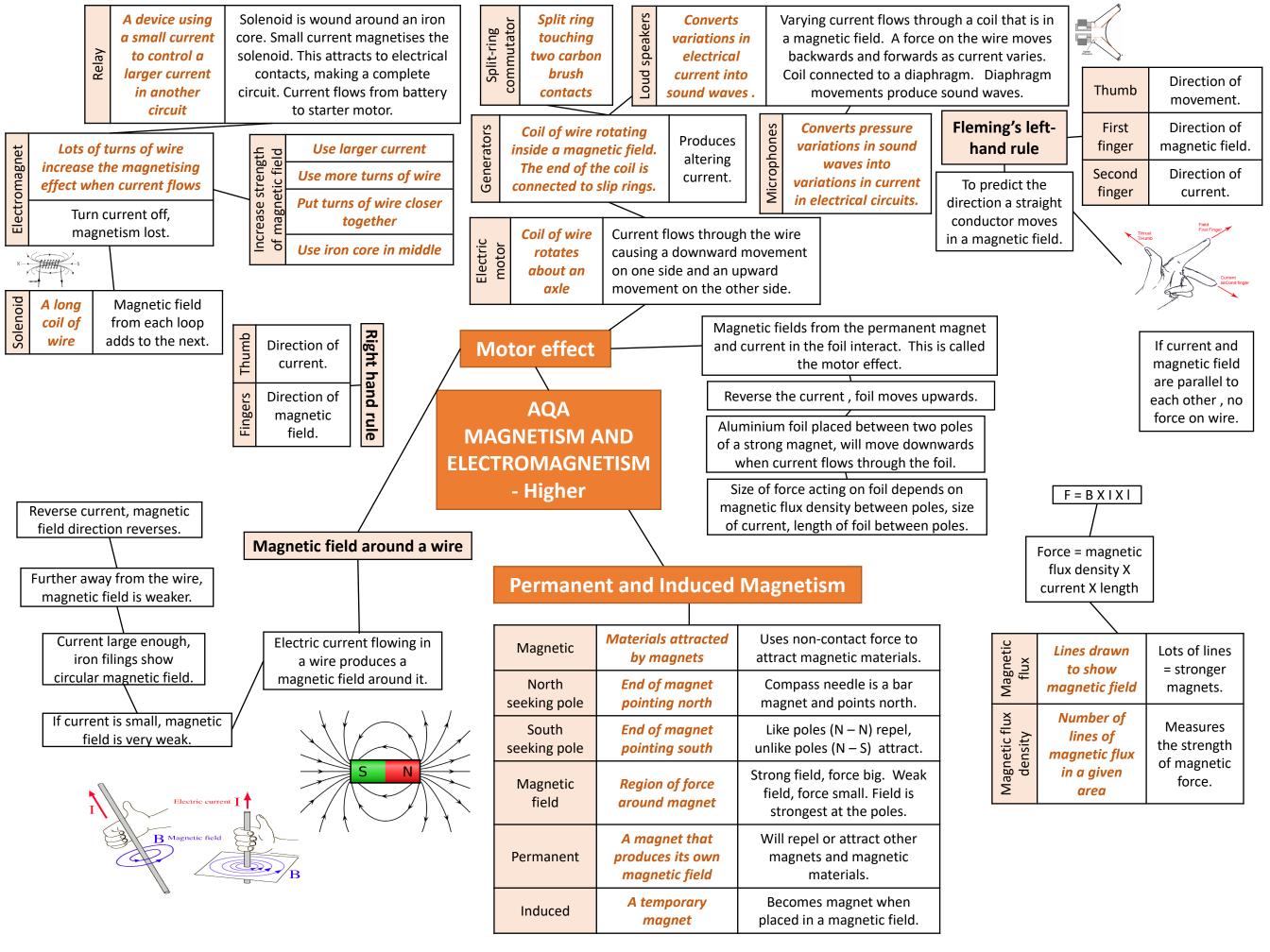

Absorbed light changes into thermal energy store.


EM wave	Danger	Use	
Radio	Safe.	Communications, TV, radio.	
Microwave	Burning if concentrated.	Mobile phones, cooking, satellites.	
Infrared		Heating, remote controls, cooking.	
Visible	Damage to eyes.	Illumination, photography, fibre optics.	
Ultra violet	Sunburn, cancer.	Security marking, disinfecting water.	
X-ray	Cell destruction, mutation, cancer.	Broken bones, airport security.	
Gamma		Sterilising, detecting and killing cancer.	


Low frequency, long wavelength.

Wave lengths reflected White Wave lengths absorbed Black

> High frequency, short wavelength



Permanent and Induced Magnetism

Magnets

Magnetic	Materials attracted by magnets	Uses non-contact force to attract magnetic materials.
North seeking pole	End of magnet pointing north	Compass needle is a bar magnet and points north.
South seeking pole	End of magnet pointing south	Like poles (N – N) repel, unlike poles (N – S) attract.
Magnetic field	Region of force around magnet	Strong field, force big. Weak field, force small. Field is strongest at the poles.
Permanent	A magnet that produces its own magnetic field	Will repel or attract other magnets and magnetic materials.
Induced	A temporary magnet	Becomes magnet when placed in a magnetic field.

A device using Solenoid is wound around an iron a small current core. Small current magnetises the to control a solenoid. This attracts to electrical larger current contacts, making a complete circuit. Current flows from battery in another circuit to starter motor. Lots of turns of wire Use larger current Increase strength increase the magnetising Use more turns of wire effect when current flows Put turns of wire closer Turn current off, together magnetism lost. Use iron core in middle Right Thumb Direction of Magnetic field Magnetic field current. from each loop adds to the next. Fingers Direction of magnetic Reverse current, magnetic field. field direction reverses. Further away from the wire, around magnetic field is weaker. Current large enough, a iron filings show wire Electric current flowing in circular magnetic field. a wire produces a

magnetic field around it.

Uses non-contact force to

attract magnetic materials.

Compass needle is a bar

magnet and points north.

Like poles (N - N) repel,

unlike poles (N - S) attract.

Strong field, force big. Weak

field, force small. Field is

strongest at the poles.

Will repel or attract other

magnets and magnetic

materials.

Becomes magnet when

placed in a magnetic field.

Permanent and Induced Magnetism

Split ring commutator Split-ring touching two carbon brush contacts Generators Coil of wire

Electric motor

speakers Converts variations in electrical Pond current into sound waves Varying current flows through a coil that is in a magnetic field. A force on the wire moves backwards and forwards as current varies. Coil connected to a diaphragm. Diaphragm movements produce sound waves.

]	Thumb	movement.
	First finger	Direction of magnetic field.
י 	Second finger	Direction of current.

Coil of wire rotating inside a magnetic field. The end of the coil is connected to slip rings.

Produces altering current.

Current flows through the wire

causing a downward movement

on one side and an upward

movement on the other side.

Microphones

Converts pressure variations in sound waves into variations in current in electrical circuits.

Magnetic fields from the permanent magnet

and current in the foil interact. This is called

the motor effect.

Reverse the current, foil moves upwards.

Aluminium foil placed between two poles

of a strong magnet, will move downwards

when current flows through the foil.

Size of force acting on foil depends on

magnetic flux density between poles, size

of current, length of foil between poles.

To predict the direction a straight conductor moves in a magnetic field.

Fleming's left-

hand rule

F = B X I X I

Force = magnetic flux density X current X length

If current and magnetic field are parallel to each other, no force on wire.

Direction of

Magnetic Lines drawn to show magnetic field Number of density lines of magnetic flux in a given

Lots of lines = stronger magnets. Magnetic flux Measures the strength of magnetic force. area

Motor effect

AQA MAGNETISM AND ELECTROMAGNETISM (Separates only)

rotates

about an

axle

Induced potential, transformers and **National Grid**

When a conducting wire moves through a magnetic field, p.d. is produced

Power lost = Potential

Generator effect

Generates electricity by inducing current or p.d.

Uses of the generator effect

Dynamo, **Microphones**

coils of wire onto an iron core

Two

heat lost from wires.

Alternating current supplied to primary coil, making magnetic field change. Iron core becomes magnetised, carries changing magnetic field to secondary coil. This induces p.d.

factories.

Step-up transformers	Step-down transformers
Increase voltage, decrease current	Decrease voltage, increase current
Increases efficiency by reducing amount of	Makes safer value of voltage for houses and

coil = power supplied to

Voltage across the coil X number of coils (primary) = Voltage across the coil X number of coils (secondary) $V_n \div V_s = n_n \div n_s$

secondary coil $V_n X I_n = V_s X I_s$

difference X Current Power supplied to primary

Force Newton (N) Magnetic Tesla (T) flux density Current Length

If current is small, magnetic field is very weak.

Electromagnet

Solenoid

A long

coil of

wire

Magnets

Materials attracted

by magnets

End of magnet

pointing north

End of magnet

pointing south

Region of force

around magnet

A magnet that

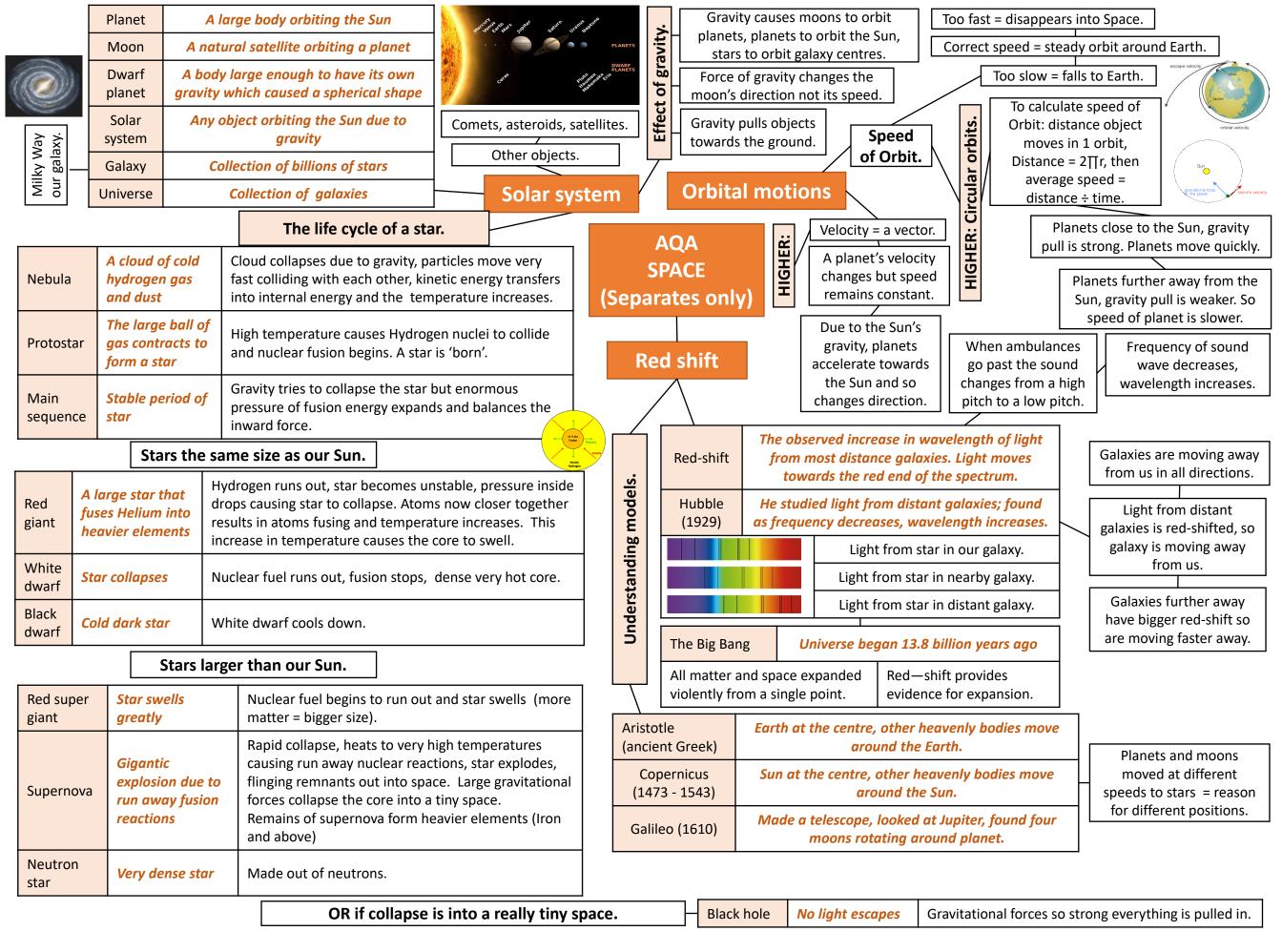
produces its own

magnetic field

A temporary

magnet

Magnetic


field

Permanent

Induced

Watts (W) Power p.d. Voltage (V)

